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From a given solvable Fokker-Planck equation one can construct a number of 
other solvable models for diffusion in a stable or bistable potential fields using 
the Gel'fand-Levitan method of the inverse scattering theory. The simplest way 
of achieving this is to change the lowest eigenvalue and/or the normalization of 
the lowest eigenfunction of the ordinary differential equation obtained by 
separating the time-dependent part. For these cases it is shown that the new 
probability distribution is expressible in terms of integrals involving the original 
probability distribution and the Gel'fand-Levitan kernel. The possibility of 
changing the lowest eigenvalue enables one to find bistable potential fields 
which would correspond to a well-defined long time relaxation rate for the 
probability current. 

KEY WORDS: Diffusion in a bistable potential field; solvable models of the 
Fokker-Planck equation; the Gel'fand-Levitan method. 

1. I N T R O D U C T I O N  

One of the most remarkable developments in mathematical  physics over the 

past few years has been the application of the inverse scattering theory to 
solve certain nonlinear  partial differential equations arising in different 

branches of physics. These equations are two dimensional  with time as one 

of the variables and a spatial coordinate as the other. Among other 
important  two-dimensional  partial differential equations of physics is the 

Fokker -P lanck  equation, which is usually linear and generally has 
coordinate-dependent coefficients. (1) This equation also has been the subject 

of extensive studies recently, and several exactly solvable models appropriate 
for a variety of physical problems have appeared in the literature. (2-7) Of 
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particular interest have been models for diffusion in bistable symmetric or 
asymmetric potential wells. The latter problem, i.e., diffusion in an asym- 
metric potential field, turns out to be more difficult to solve in closed form, 
and even the solvable ones, because of the lack of symmetry, have a more 
complicated analytic structure. But it is for the construction of solvable 
models with asymmetric wells that the method of the inverse scattering 
theory works best, since it enables one to determine a potential field with 
needed asymmetry, and with a prescribed long-time relaxation rate. In 
Section 2, following van Kampen's approach, we show how the solution of 
the Fokker-Planck equation can be expressed in terms of the solution of the 
Schr6dinger equation with a confining potential. Limiting our attention to 
those cases where the latter equation is exactly solvable, we observe that the 
potential, and hence the eigenfunctions of the Schr6dinger equation, can be 
changed by changing the normalization and or the energy levels of one or a 
number of low-lying states with the help of the Gel'fand-Levitan 
equation. (8-1~ The resulting set of wave functions and the potential will 
correspond to a different, yet solvable, Fokker-Planck equation. In fact it is 
possible to relate the new probability distribution of the transformed 
Fokker-Planck equation to the old probability distribution, i.e., the solution 
of the original Fokker-Planck equation. Some examples utilizing this 
procedure are given in Section 3, where from the solution of the 
Fokker-Planck equation for symmetric stable or bistable potentials, the 
probability distributions for diffusion in nonsymmetric potential fields have 
been obtained. 

2. SOLUTION OF THE FOKKER-PLANCK EQUATION FOR A BISTABLE 
FIELD 

The Fokker-Planck equation describing the diffusion in a bistable 
potential field U(x) is given by ~1) 

c~t = cgx \ -~-x  ] + cgx 2 
(2.1) 

where P(x,  t) is the probability distribution function at the time t, which is to 
be determined when the initial condition P(x,  t = 0) is given. Usually it is 
assumed that the probability distribution is localized sharply around the 
point x = y, i.e., 

P(x,  t = O) = 6(x - y)  (2.2) 

There are few exactly solvable cases of (2.1) with the boundary condition 
(2.2) which are known, and they are all related to the solvable Schr6dinger 
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equation with confining potentials. (z-v) Physically the most interesting cases 
of (2.1) are those where U(x) is bistable and is either a symmetric or an 
asymmetric function of x. van Kampen has shown that the solution of (2.1) 
with the initial condition (2.2) can be expressed in terms of the eigenvalues 
of the Schr6dinger equation 

0j' + [2j - v(x)] Oj = 0, j = 0, 1, 2 .... (2.3) 

provided that the ground state of (2.3) and U(x) be related to each other by 

U(x) = - 2 0  log O0(x) (2.4) 

If v(x) is a double well potential, then for certain values of the parameters of 
v, U(x) will be bistable and the symmetry (or asymmetry) of v(x) will 
determine the symmetry (or asymmetry) of U(x). Supposing that all of the 
eigenvalues 2j and eigenfunctions Oi(x) of (2.3) are known, then by 
expanding P(x,t) in terms of Cj(x)O0(x)ex p ( -2 i t )  one finds that the 
solution of (2.1) with the initial condition (2.2) can be expressed as an 
infinite sum, (3) 

p(x,  y, t) = Oo(x) 
j=o 0 0 - ~  Oj(x)0j(y)ex p [--0(2j - 2o) t ] (2.5) 

where it is assumed that the wave functions are all normalized. Due to the 
bistability of the potential v(x), the set of eigenvalues 2j in (2.3) satisfy the 
following important condition: 

21 - 20 ~ 2j - 40, j > / 2  (2 .6)  

This means that after the time t ~ [(21 - 2 o ) 0 ]  -1, Eq. (2.5) reduces to 

P(x, y, t) = 02(x) + 01(x) Ol(Y) exp [--0(41 - 40) t] ~bo(X)/qio(y ) (2.7) 

An exponential decay law of the form (2.7) is obviously a direct result of the 
inequality (2.6) satisfied by the eigenvalues, and this condition in turn can be 
obtained by choosing v(x) to be a double or a multiple well. Now let us 
suppose that for a certain potential v(x), not necessarily double or multiple 
well, the Schr6dinger equation is solvable and the set of eigenvalues )~j and 
eigenfunctions ~j are known. If these 2fs do not satisfy the condition (2.6), 
we can impose (2.6) by just changing one or a few of the lowest eigen- 
values. This clearly changes the potential and the eigenfunctions as well, but 
we do not need to find the new potential or even the new set of eigen- 
functions, we can directly relate the new distribution function which we 
denote by Q(x, y, t) to P(x, y, t). Since we are changing the eigenvalues 



658 Hron and Razavy 

and/or the normalization of any given eigenfunction, the new set of wave 
functions ~'j(x) are derivable from the old set 0j(x) by means of the 
Gel'fand-Levitan kernel K(x, x')(9'l~ 

f x ~,j(x) = Oj(x) + K(x, x') Oj(x') dx' 
--0(3 

where K is the unique solution of the integral equation 

(2.8) 

f 
X 

K ( x , x ' ) + F ( x , x ' ) +  K ( x , x " ) F ( x " , x ' ) d x " = O  (2.9) 
--00 

The input function F(x, x') is given in terms of the old wave functions and 
the normalization constants for the new wave functions qJj(x). Confining our 
attention to the simplest modification of the spectrum compatible with (2.6), 
we change the lowest eigenvalues to v 0 and also assume that the ground 
states of the new set of eigenfunctions ~,0(x) satisfy the normalization con- 
dition 

1 (+oo 
F- = ~-~o ~t~(x) dx (2.10) 

With these changes the input function F(x, x') assumes the form (I~ 

F(x,x')=FOo(Vo,X)Oo(Vo, X')--Oo(2o,X)Oo(2o,X' ) (2.11) 

where Oo(Vo, x) is the original ground state but with )~o replaced by v o, i.e., 
Oo(2o-+Vo,X) Substituting (2.11) in (2.9) we observe that K(x ,x ' )  is a 
degenerate kernel which is expressible as the sum of two terms: 

K (x, x '  ) = Oo(Vo , x'  ) k(x ) + 0o(~o, x '  ) q(x ) (2.12) 

where k(x) and q(x) are the solutions of a set of coupled linear algebraic 
equations 

+ rOo(Vo, x) = o 

f X  + rq(x) Oo(&, ~) Oo(Vo, ~) a~ 
- - 0 0  

(2.13) 

and 

q(x) 1 -- O~(Zo,r --k(x)  
--00 --Of) 

- 00(20, x)  = 0 

Oo(&, ~) Oo(Vo, ~) de 

(2.14) 
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Equations (2.12)-(2.14) give the explicit dependence of K on x and x' ,  
which enable us to calculate ~j(x) from Oj(x) for all values of j. A 
particularly simple case is obtained when the potential v(x) is a double or 
multiple well and 2fs satisfy (2.6). Then we can find a new distribution 
function Q from the old P, by just changing the normalization of the ground 
state without changing the eigenvalues. In this case F(x, x ')  reduces to 

F(x, x') = ( r -  1) 00(%, x') 0o(%, x) (2.15) 

with the corresponding K(x, x') ;  

= - q~({) d{ (2.16) 

In general we can change the normalization of a finite number, N, of the low- 
lying wave functions and/or we can change a finite number, M, of the low- 
lying eigenvalues. The corresponding K(x, x')  can be obtained by solving a 
set o f M  + N linear equations. For the special case of M =  N = 1, Eq. (2.12), 
or N = 1, M = 0, Eq. (2.16), the completeness relation for the set of ~,a's is 
given by 

c~(x -- y) = ~" ~'j(x) q/j(y) + (F--  1) q/0(x) ~'0(Y) 
j =  0 

(2.17) 

whereas for the normalized set of Ors we have 

~" Oa'(x) Oj(Y) = a(x - y) (2.18) 
j = O  

Now let us assume that a solution of (2.1) with the boundary condition (2.2) 
is known when U(x), which is given by (2.4), may or may not be bistable; 
we want to obtain a solution of the Fokker-Planck equation 

c~ cg (dW ) 6q2Q (2.19) 
& Q(x, t) = ~x ~-x Q + 0  ax--- 5- 

with the initial condition 

Q(x, t = o) = c~(x - y) (2.20) 

Here W(x) is related to tYo(X ) by 

[ fx ] 
W(x)=--2Olog ~'o(X)=--2Olog ~0(x) + K(x ,x ' )Oo(x ' )dx '  

- - 0 0  

(2.21) 
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which is bistable either because v(x) is a double well or because v 0 is chosen 
to be very close to 2 l, i.e., 21 - v  0 ~ )~2-20 .  With our choice of W(x), 
Eq. (2.9) becomes similar to (2.1) and therefore has a solution similar to 
(2.5) 

Q(x, y, t) = ~ ~,~(x) qJj(y) exp [-O()~j - Vo) t] qJo(X)/~,o(y) 
j o 

+ ( F -  1) ~'~(x) (2.22) 

The last term, which is also a solution of  (2.19), is added so that at t = 0, the 
initial condition (2.20) can be satisfied. Now Q(x,y,t) can directly be 
related to P(x, y, t) by first replacing ~,j's by 0j's using Eq. (2.8), and then 
summing over a l l f s  making use of  (2.18); 

~'o(y) 
- -  Q ( x ,  y ,  t )  
V,o(X) 

= ( F - -  1) qJo(X) qJo(Y) exp[-O(2o -- Vo) t] 

l Oo(y) n~ x , Oo(X') ~ - ~ r t x ,  y,t)+ ~ K(x,x ) -~-~P(y,x ' ,  X t) 
x 

f "  Oo(y') ~, + -co K(y 'Y ' ) -~o~-r tx 'y" t )dy '  

x, I x Oo(X') p~ , x '  t)clx' ely' 
Oo(y') t y ,  , 

d x  

(2.23) 

Note that qJo and 00 are both ground-state wave functions and have no nodes 
therefore the integrals are all well defined. In Eq. (2.23) ~'0 can be expressed 
directly in terms of O0 and K(x,x') and since K depends on v 0 and F, 
therefore the shape and the symmetry  properties of  ~t 0 and consequently W 
will be determined by these two parameters.  

3. E X A M P L E S  

We will study two sets of  examples:  First those cases where U(x) is 
bistable, and a change of normalizat ion of the ground-state wave function is 
enough to obtain a new solvable Fokke r -P lanck  equation. Consider the 
ground-state wave function of the double well potential (~1) 

v(x) = [ ~ 2  cosh 4x -- (n + 1) ~ cosh 2x -- ~ 2 ]  (3.1) 
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which for a given integer n can be written as 

4o = r/o(X) exp (- �88 cosh 2x) (3.2) 

where 11o(X) is a polynomial of degree n in cosh x. A change in the 
normalization of ~b 0 produces a new set of wave functions qtj(x) which are 
related to #j(x) be means of (2.8), where the kernel is given by (2.16). From 
(2.16) and (3.2) it follows that g,0(x) is related to t/0(x ) by 

~o(X) = ~lo(X) exp (-J { cosh 2x)/[1 + (F--1) 

;x ] 
• -co r/~ exp (--�89 cosh 2x')  dx' (3.3) 

and hence W(x) = - 28 log ~,o(X) can be found. In all the cases where only 
the normalization of the ground-state wave function is changed, the relation 
between W(x) and U(x) takes the simple form 

l ; II  W(x)=U(x)+2Olog l + ( V - 1 )  exp - ~ - g ( x ' )  dx' (3.4) 
- - O O  

Here both U and W are bistable, but with a symmetric U, W is generally 
asymmetric. Next let us consider a change in the lowest eigenvalue plus a 
change in the normalization of the ground state. By changing the lowest 
eigenvalue we can adjust the long-time relaxation rate through the factors 
8(21 - 2 0 )  and 8 (22-20)  in Eq. (2.5). The simplest example of this 
procedure is that of the set of wave functions for a particle in a box of 
lengths .~. The normalized eigenvalues in this case are 

Oj= s i n ( j +  1)x, j = O ,  1,2 .... (3.5) 

and therefore P(x, y, t) is 

j=o si-~y s in[ ( j+l )x]s in[ ( j+l )y]  

1 sin x 
• exp {--O[(j + 1) 2 -  1] t}--  2~r sin y - -  { o + [ � 8 9  - y ) ,  e 

- -  03[�89 (X + Y), c-Ot]} e o t  

-or] 

(3.6) 
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where 03 is the theta function. ~2) From the lowest eigenfunction of (3.5), i.e., 
00 which corresponds t o j  = 0 and it = 1, we find G0(x): 

Ov0(x) = sin l~/2X = sin (2 - e) x (3.7) 

so that v 0 = i t 1 -  4e + e2 with e a small positive number. Using (3.7) and 
(2.1 1) we find F(x, x'): 

F(x,x')-- -__22 [sin x sin x ' - - F s i n ( 2 - e ) x s i n  ( 2 -  e) x']  (3.8) 
- -  7 r  

The kernel K(x, x') is degenerate and separable [Eqs. (2.13) and (2.14)] and 
from it we determine q/o(x) and W(x): 

W(x) = - 2 0  log ~o(x) 

=--20log I (2) 1/2 [s inx + JoXK(x,x')sinx' dx']l (3.9) 

In this problem U(x) is not bistable: 

U(x) -20log [(sinx) (2) 1/2] = (3.10) 

whereas W(x) which depends on the two parameters F and e can be made 
bistable with the appropriate choice of these two parameters. 

For the third example we consider the case where ~fs are harmonic 
oscillator wave functions, with the ground state given by 

00(X) = e -(1/2)x2 (3.11) 

Since in this case Ors are solutions of the eigenvalue equation 

0 " +  ( 2 - x 2 ) 0  = 0  (3.12) 

for values of 2 that satisfy the relation 

its = 2j + 1, j = 0 ,  1,2 .... (3.13) 

we have the harmonic oscillator wave function O~(x). However, when it does 
not satisfy (3.13), the solution of (3.12) is given by 

O(it, x)=,/U.e_(1/2)X21Fl ( 2 - - 1 1  ) - -  2 ' 2 '  x 2  ( 3 . 1 4 )  
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where xF 1 is the degenerate hypergeometric function and ~ r  is the 
normalization constant. Now 2 in (3.14) should be replaced by v 0, which lies 
between 2 0 = 1 and 21 = 3, therefore we let vo= 3 -  2g with e a number 
between zero and one, and with this parameter we have the normalized wave 
function 

4o(Vo,X) = ( 2 - - 4 g  + 3e 2 ) 1 / 2 ( 1 )  1/4 

X lf l[--(1 --g),• X 2] 2~ 1 

e (1/2)x2 

(3.15) 
and hence 

F(x, x') -- 2 -- 4 e 1 ( 1 )  1/2e-(l/2'(x2+x'2~{1-1Fl[-(1-e)'�89 3e 2 

X I F I [ - - ( 1 -  e),  l , x / 2 ] }  (3.16) 

To calculate W(x), we observe that ~,o(X) is given by 

V~o(X) = 40(20, x) +'!'x iV(x, x')  4o(,to, x')  & '  - 
N(x) 

_ co D ( x )  
(3.17) 

where K(x, x') is defined by Eqs. (2.12)-(2.14). Substituting for K(x, x') we 
find 

N(x) = 40(20, x)[1 + I') co 4~(Vo, x') dx' l 

i 
x 

- V4o(Vo, x) 4o(~o, x) 40(20, x') & '  
J--oo 

(3.18) 

and 

IX 
D ( x ) =  1 + [F42(Vo,X')--42(2o,X')] dx' 

co 

f~ (x 
+ r 0~(~o, x') dx' 0o~(~o, x') dx' 

--00 ~ --00 [; ]2 
+ r 0o(Vo, x')  00(20, x') dx' 

--OO 
(3.19) 

Therefore 

W(x) = --20[log N(x)~  log D(x)] (3.20) 
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4. RESULTS 

Starting with a potential function for which the Schr6dinger equation is 
solvable, we can calculate U(x), the potential field in the Fokker-Planck 
equation, using Eq. (2.4), and determine the distribution function P(x, y, t) 
from Eq. (2.5). We can also solve the Fokker-Planck equation (2.19) for the 
bistable potential field W(x), where W(x) is given by (2.21). The first 

o ~ 
. . . . .  ~ r  r  e--; 

I I . J  
-3 

Fig. 1. The potential field W(x) defined by Eqs. (2.19) and (2.21) is obtained from the 
solution of the harmonic oscillator problem by changing the ground-state eigenvalue [see 
Eqs. (3,11)-(3.19)] . e = 1 refers to the oscillator eigenvalues, and ~ = 0 corresponds to the 
case where the ground-state eigenvalue is deleted from the spectrum. 
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example that we want to discuss is the one in which v(x) is the harmonic 
oscillator potential, i.e., ~0(x) is given by (3.11). Here W(x) can assume a 
bistable from if we change the lowest eigenvalue of the system. From 
Eqs. (3.16), (3.17), and (2.21), we find W(x) which is dependent on the 
parameter e, where 0 ~< e ~ 1. Figure 1 shows W(x) for different values of e 
when F =  1. The behavior of W(x) for F ) 0 . 7 5  is similar to that shown in 
Fig. 1, however for F < 0.75, W(x) will have one minimum only for all 
values of e between zero and one. We observe that in this example the height 
of the central maximum for W(x) is very small, and this smallness of the 
barrier makes it difficult to present an accurate description of the different 
stages of the time evolution of the probability density. Therefore we consider 
the second example in which v(x), U(x), and W(x) are all bistable functions 
and W(x) is related to U(x) by the change of the normalization of the 
ground-state wave function. Consider the case where ~0(x) is given by (3.2) 
and ~'0(x) is obtained by (3.3), with the result that W(x) = - 2 0  log gt0(x ) is a 
bistable asymmetric potential with two well-separated minima. Here the 
asymmetry is determined by the parameter F, i.e., when F =  1, W(x) is 
symmetric, but by decreasing F, the asymmetry becomes more pronounced. 
Let us consider the time evolution of the new probability density Q(x, y, t) 
when at t = 0, the distribution is peaked around the central maximum of the 
double well potential W(x), i.e., 

Q(x, t =  O) = •(x -- Xm) (4.1) 

1.5 
\ / / ~  

/ 

/ 
\ / 

U(x) / 1.0 
\ / 
\ / 

/ 
\ / 
\ / 
\ 

. / /  t = 0.2 

-1.2 0.8 -0.4 0 

Q (x,t) 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

\ 
\ 

0.4 0.8 1.2 

Fig. 2. A plot of Q(X, Xm,t) as a function of x for two different times t = 0 . 2 0  i and 
t = 0 . 5 0 - 1 .  At t = 0 ,  Q ( x , t = 0 ) = 6 ( x - x m ) ,  where x , , = 0  corresponds to the 
macroscopically unstable point. Here the well is slightly asymmetric, F = 0.95, and this asym- 
metric well is shown by the dashed line ({ = 2, n = 3). 

822/38/3 4-16 
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where x m lies to the left of the origin. If we choose t large enough, Q(x,  Xm, t) 
can be written as 

n+ ~ q/i(Xm ) e -~176  Q(x,  x m, t) = F~t~(x) + i=, ~ ~'i(x) qJ~ (4.2) 

where n is the integer which appears in the potential v (x )  [Eq. (3.1)]. Since 
the term containing the factor exp[-0(2,+ 2 - 4 0 ) t ]  and higher-order terms 
are neglected in (4.2), the values of the distribution function Q(x,  x m, t) for 
the early stages of evolution, i.e., for times less than [0(Ln+ z - 2 0 )  ] -1 are not 
reliable. 

At these early stages the initial delta function peak broadens rapidly. 
The broadening of the peak is followed by the appearance of two peaks, 
which happens after a time of the order of 0.1-0.200 -1 (Figs. 2-4). Finally 
in the last stage the two peaks have reached their local equilibria 
( t~0.50-1) .  The time-dependent probabilities of finding the Brownian 
particle to the left or to the right of the central maximum are given by 

p _ ( t )  = Q(x ,  x m, t) d x  (4.3) 

and 

p+ (t) = Q(x,  x m , t) d x  (4.4) 
m 

These two probabilities have the long time limit of 

p ( o o ) = F I  xm qJ~(x) d x  (4.5) 
a 0(5 

and 

p + ( o c )  = F  ~ ,2 (x )dx  (4.6) 
m 

respectively. In Fig. 5, p _ ( t )  is plotted as a function of log t ( 0=  1) for 
different values of the asymmetry parameter F. Note that because of 
terminating the infinite series (4.2) after n + 1 terms, for short times, the 
conservation of probability is violated in this approximation, i.e., p _ ( t )  > 1 
at the early stages of evolution, - 3  < log t < -1 .  
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x / 

Fig .  3. Q ( x ,  x m ,  t)  as  a f u n c t i o n  o f  x f o r  F =  0 . 2 5  a t  t = 0 . 2 0  1 a n d  f = 0 . 5 0  ~. In  th i s  c a s e  

x , ,  = - 0 . 1 .  T h e  d a s h e d  l ine  s h o w s  U(x) (4 = 2,  n = 3) .  

~.slQ (X,t) 

1.0 

~-~ I %."k. I 
-1.6 -12 -0.8 -0.4 0 0.4 08  1.2 1.6 

F ig .  4.  S a m e  as  F ig .  3,  b u t  w i t h F = 0 . 0 5  a n d x ~ =  0 . 1 5 .  
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1.5 

02 

I I I 
- 6  - 4  -2 

p_(t) 

F = . 9 5  

- I - = . 5  

F = . 2 5  

F = . I  
F = . 0 5  

2 4 6 
log t 

Fig. 5. The probability of finding the Brownian particle to the left of the barrier given as a 
function of log t (0 = 1). Note that p_(t) > 1 for - 3  < log t < --1 is the result of terminating 
the infinite series after three terms. F =  1 corresponds to a symmetric bistable potential field, 
Eq. (3.1), and F = 0.05 is a highly asymmetric case. 
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